题目内容
4.分析 把此正方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.
解答
解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.
展开后由勾股定理得:AB2=102+(10+10+10)2=10×102,
故AB=10$\sqrt{10}$cm.
故答案为$10\sqrt{10}$.
点评 本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.
练习册系列答案
相关题目
9.一圆柱的侧面展开图是边长分别为6和8的长方形,則该圆柱的底面积是( )
| A. | 3π或4π | B. | $\frac{3}{π}$或$\frac{4}{π}$ | C. | $\frac{6}{π}$或$\frac{8}{π}$ | D. | $\frac{9}{π}$或$\frac{16}{π}$ |