题目内容

如图,线段AD、PC、EB两两相交,连接AB、CD、EF,则∠A+∠B+∠C+∠D+∠E+∠F=
 
考点:三角形内角和定理
专题:
分析:根据三角形的外角性质得出∠BMQ+∠DQF+∠FNM=∠A+∠+∠C+∠D+∠E+∠F,代入∠BMQ+∠DQF+∠FNM=360°求出即可.
解答:
解:∵∠BMQ=∠A+∠B,∠DQF=∠C+∠D,∠FNM=∠E+∠F,
∴∠BMQ+∠DQF+∠FNM=∠A+∠+∠C+∠D+∠E+∠F,
∵∠BMQ+∠DQF+∠FNM=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°,
故答案为:360°.
点评:本题考查了三角形的外角和定理,三角形的外角性质的应用,主要考查学生运用定理进行推理的能力,注意:三角形的一个外角等于和它不相邻的两个内角的和,三角形的外角和等于360°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网