题目内容
14.(1)用直尺和圆规作△ABC的角平分线CG.
(2)作BC边上的高线(本小题作图工具不限).
(3)用直尺和圆规作△DEF,使△DEF≌△ABC.
分析 (1)利用基本作图(作已知角的平分线)画∠ACB的平分线OG;
(2)过点A作AH⊥BC于H,则AH为BC边上的高;
(3)先作线段EF=BC,然后分别以E、F为圆心,BA和CA为半径画弧,两弧交于点D,则△DEF与△ABC全等.
解答 解:(1)如图1,CG为所作;
(2)如图1,AH为所作;![]()
(3)如图2,△DEF为所作.![]()
点评 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
练习册系列答案
相关题目
5.某商店以一定的价格购进某种干果若干千克,对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,于不同时间销售完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x的关系为y1=-x2+40x;乙级干果从开始销售至销售的第x天的总销量y2(千克)与x的关系为是二次函数,且乙级干果的前三天的销售量的情况见表:
(1)求乙级干果滴x天的总销量y2(千克)与x的函数关系式(不需要写自变量的取值范围);
(2)求:当一种干果销售完多长时间后,另一种干果才销售完?
(3)销售第几天时,两种干果的总销量相差最大?
| x | 1 | 2 | 3 |
| y2 | 58 | 112 | 162 |
(2)求:当一种干果销售完多长时间后,另一种干果才销售完?
(3)销售第几天时,两种干果的总销量相差最大?
19.某电器厂生产一种新产品,在定价时不单是根据生产成本而定,还要请各消费单位来出价,即他们愿意以什么价格来购买.根据调查得出需求函数x=-900P+45000,该厂生产该产品的固定成本是270000元,而单位产品的变动成本为10元,为获得最大利润,出厂价格应为( )
| A. | 9000(单位) | B. | 8000(单位) | C. | 1000(单位) | D. | 18000(单位) |
3.
如图,把△ABC绕点C顺时针旋转32°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A度数为( )
| A. | 48° | B. | 58° | C. | 68° | D. | 78° |