题目内容
13.分析 首先证明四边形ABEF是菱形,得出AE⊥BF,OB=OF=6,OA=OE,利用勾股定理计算出AO,从而得到AE的长.
解答 解:连结EF,AE与BF交于点O,如图,![]()
∵AO平分∠BAD,
∴∠1=∠2,
∵四边形ABCD为平行四边形,
∴AF∥BE,
∴∠1=∠3,
∴∠2=∠3,
∴AB=EB,
同理:AF=BE,
又∵AF∥BE,
∴四边形ABEF是平行四边形,
∴四边形ABEF是菱形,
∴AE⊥BF,OB=OF=6,OA=OE,
在Rt△AOB中,由勾股定理得:OA=$\sqrt{A{B}^{2}-O{B}^{2}}$=$\sqrt{1{0}^{2}{-6}^{2}}$=8,
∴AE=2OA=16.
故答案为:16.
点评 本题考查了平行四边形的性质、菱形的判定与性质、等腰三角形的判定、勾股定理;熟练掌握平行四边形的性质,证明四边形ABEF为菱形是解决问题的关键.
练习册系列答案
相关题目
4.已知等腰三角形的两边长分別为a、b,且a、b满足$\sqrt{a-2}+(b-3)^{2}$=0,则此等腰三角形的周长为( )
| A. | 7或8 | B. | 6或10 | C. | 6或7 | D. | 7或10 |
1.一组数据3,-4,6,0,则这组数据的极差是( )
| A. | 10 | B. | 9 | C. | 3 | D. | 2.5 |
5.已知A(x1,y1)、B(x2,y2)均在反比例函数y=$\frac{2}{x}$的图象上,若x1<0<x2,则y1、y2的大小关系为( )
| A. | y1<0<y2 | B. | y2<0<y1 | C. | y1<y2<0 | D. | y2<y1<0 |
2.
如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,D为AC的中点,E是线段AB边上一动点,连接ED、EC,则△CDE周长的最小值为( )
| A. | 3$\sqrt{5}$ | B. | 3$\sqrt{3}$ | C. | 3$\sqrt{3}$+3 | D. | 3$\sqrt{5}$+3 |