题目内容
15.其中正确结论的是①②③④.
分析 先证明△ABD是等边三角形,再根据菱形的性质可得∠BDF=∠C=60°,再求出DF=CE,然后利用“边角边”即可证明△BDF≌△DCE,从而判定①正确;
根据全等三角形对应角相等可得∠DBF=∠EDC,由三角形的外角性质求出∠DMF=∠BDC=60°,再求出∠BMD=120°,从而判定②正确;
根据三角形的外角性质和平行线的性质求出∠ABM=∠ADH,由SAS证明△ABM≌△ADH,根据全等三角形的性质得出AH=AM,∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,从而判定出△AMH是等边三角形,得出③正确;
根据全等三角形的面积相等可得△AMH的面积等于四边形ABMD的面积,然后判定出④正确.
解答 解:在菱形ABCD中,
∵AB=BD,
∴AB=BD=AD,
∴△ABD是等边三角形,
∴根据菱形的性质可得∠BDF=∠C=60°,![]()
∵BE=CF,
∴BC-BE=CD-CF,
即CE=DF,
在△BDF和△DCE中,$\left\{\begin{array}{l}{CE=DF}&{\;}\\{∠BDF=∠C=60°}&{\;}\\{BD=CD}&{\;}\end{array}\right.$,
∴△BDF≌△DCE(SAS),故①正确;
∴∠DBF=∠EDC,
∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,
∴∠BMD=180°-∠DMF=180°-60°=120°,故②正确;
∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,
∴∠DEB=∠ABM,
又∵AD∥BC,
∴∠ADH=∠DEB,
∴∠ADH=∠ABM,
在△ABM和△ADH中,$\left\{\begin{array}{l}{AB=AD}&{\;}\\{∠ADH=∠ABM}&{\;}\\{DH=BM}&{\;}\end{array}\right.$,
∴△ABM≌△ADH(SAS),
∴AH=AM,∠BAM=∠DAH,
∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,
∴△AMH是等边三角形,故③正确;
∵△ABM≌△ADH,
∴△AMH的面积等于四边形ABMD的面积,
又∵△AMH的面积=$\frac{1}{2}$AM•$\frac{\sqrt{3}}{2}$AM=$\frac{\sqrt{3}}{4}$AM2,
∴S四边形ABMD=$\frac{\sqrt{3}}{4}$AM2,故④正确,
综上所述,正确的是①②③④.
故答案为:①②③④.
点评 本题是四边形综合题目,考查了菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,题目较为复杂,特别是图形的识别有难度,从图形中准确确定出全等三角形并找出全等的条件是解题的关键.
(1)求证:四边形ABDE是平行四边形;
(2)连接DF,求DF的长.
| 种类 | 单价 |
| 米饭 | 0.5元/份 |
| A类套餐菜 | 3.5元/份 |
| B类套餐菜 | 2.5元/份 |