题目内容

11.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.
(1)已知EO=$\sqrt{2}$,求正方形ABCD的边长;
(2)猜想线段EM与CN的数量关系并加以证明.

分析 (1)根据正方形的性质以及勾股定理即可求得AC的长,再证得EO是△AFC的中位线,从而得EO、AC的长,知道AC的长后可求BC;
(2)连接FN,根据等腰三角形三线合一的性质证得CE⊥AF,进一步得出∠BAF=∠BCN,然后通过证得△ABF≌△CBN得出BF=BN,进而证得△CFN∽△EOM,根据相似三角形的性质,可得EM与CN的数量关系.

解答 解:(1)∵四边形ABCD是正方形,
∴CA=$\sqrt{2B{C}^{2}}$=$\sqrt{2}$BC.
∵CF=CA,CE是∠ACF的角平分线,
∴E是AF的中点.
∵E、O分别是AF、AC的中点,
∴EO∥BC,且EO=$\frac{1}{2}$CF,
∵EO=$\sqrt{2}$,
∴CA=CF=2$\sqrt{2}$,
∴BC=2.
∴正方形ABCD的边长为2;

(2)EM=$\frac{1}{2}$CN.
证明:连接FN,
∵CF=CA,CE是∠ACF的平分线,
∴CE⊥AF,
∴∠AEN=∠CBN=90°,
∵∠ANE=∠CNB,
∴∠BAF=∠BCN,
在△ABF和△CBN中,
$\left\{\begin{array}{l}{∠BAF=∠BCN}\\{∠ABF=∠CBN=90°}\\{AB=BC}\end{array}\right.$,
∴△ABF≌△CBN(AAS),
∴BF=BN,
∴∠CFN=∠FNB=45°,
∵四边形ABCD是正方形,
∴∠DBC=45°,
∵EO∥BC,
∴∠EOM=∠DBC=45°,∠OEM=∠FCN,
∴∠CFN=∠EOM,
∴△CFN∽△EOM,
∴$\frac{EM}{CN}=\frac{EO}{CF}$,
即$\frac{EM}{CN}$=$\frac{\sqrt{2}}{2\sqrt{2}}$.
∴EM=$\frac{1}{2}$CN.

点评 本题考查了正方形的性质,勾股定理的应用,等腰三角形三线合一的性质,三角形全等的判定和性质,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网