题目内容

19.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:
①∠AGD=112.5°;②tan∠AED=$\sqrt{2}$+1;③四边形AEFG是菱形;④S△ACD=$\sqrt{3}$S△OCD
其中正确结论的序号是①②③.(把所有正确结论的序号都填在横线上)

分析 根据翻转变换的性质、正方形的性质进行计算,判断即可.

解答 解:∵四边形ABCD是正方形,
∴∠ADB=45°,
由折叠的性质可知,∠ADE=∠BDE=22.5°,
∴∠AGD=180°-90°-22.5°=112.5°,①正确;
设AE=x,
∵△BEF是等腰直角三角形,
∴BE=$\sqrt{2}$EF=$\sqrt{2}$AE=$\sqrt{2}$x,
∴x+$\sqrt{2}$x=1,
解得,x=$\sqrt{2}$-1,
∴tan∠AED=$\frac{AD}{AE}$=$\sqrt{2}$+1,②正确;
由同位角相等可知,GF∥AB,EF∥AC,
∴四边形AEFG是平行四边形,
由折叠的性质可知,EA=EF,
∴四边形AEFG是菱形,③正确;
由正方形的性质可知,S△ACD=2S△OCD,④错误,
故答案为:①②③.

点评 本题考查的是翻转变换的性质、菱形的性质、解直角三角形的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网