题目内容
已知直线ln:y=-| n+1 |
| n |
| 1 |
| n |
| 3 |
| 2 |
| 1 |
| 2 |
分析:
解出l1、l2、l3、l4…ln的解析式为l1:y=-2x+1,l2:y=-
x+
,
l3:y=-
x+
,l4:y=-
x+
,l5:y=-
x+
…
ln:y=-
x+
(n是不为零的自然数).
于是S1=1×
×
=
;
S2=
×
×
=
;
S3=
×
×
=
;
S4=
×
×
=
;
S5=
×
×
=
…
Sn=
×
×
=
.
s1+s2+s3+s4+s5=
+
+
+
+
=
.
| 3 |
| 2 |
| 1 |
| 2 |
l3:y=-
| 4 |
| 3 |
| 1 |
| 3 |
| 5 |
| 4 |
| 1 |
| 4 |
| 6 |
| 5 |
| 1 |
| 5 |
ln:y=-
| n+1 |
| n |
| 1 |
| n |
于是S1=1×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
S2=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 12 |
S3=
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 24 |
S4=
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 40 |
S5=
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 60 |
Sn=
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2n(n+1) |
s1+s2+s3+s4+s5=
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 24 |
| 1 |
| 40 |
| 1 |
| 60 |
| 5 |
| 12 |
解答:解:s1+s2+s3+s4+s5=
;
Sn=
.
| 5 |
| 12 |
Sn=
| 1 |
| 2n(n+1) |
点评:此题是一道规律探索性题目,先根据函数解析式的通项公式得出每一个函数解析式,画出图象,总结出规律,便可解答.
练习册系列答案
相关题目