题目内容
已知直线ln:y=-| n+1 |
| n |
| 1 |
| n |
| 3 |
| 2 |
| 1 |
| 2 |
分析:分别求得△A1OB1,△A2OB2,以及△AnBnCn的面积,总结规律.即可求得.
解答:解:y=-2x+1中分别令y=0,x=0,解得:x=1,y=
,即直线与x轴和y轴交点A1和B1,分别是(1,0)(0,
).则△A1OB1(其中O是平面直角坐标系的原点)的面积为
×1×
.
同理△A2OB2的面积为:
×
×
;
△AnBnCn的面积是
×
×
.
则S1+S2+…+S2009的值
×1×
+
×
×
+…+
×
×
=
(1-
+
-
+
-
+…+
-
)
=
(1-
)
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
同理△A2OB2的面积为:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
△AnBnCn的面积是
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
则S1+S2+…+S2009的值
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2009 |
| 1 |
| 2010 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2009 |
| 1 |
| 2010 |
=
| 1 |
| 2 |
| 1 |
| 2010 |
=
| 2009 |
| 4020 |
点评:正确求出各个三角形的面积是重点,求
×1×
+
×
×
+…+
×
×
的值是解决本题的关键.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2009 |
| 1 |
| 2010 |
练习册系列答案
相关题目