题目内容
已知直线ln:y=-| n+1 |
| n |
| 1 |
| n |
| 3 |
| 2 |
| 1 |
| 2 |
依此类推,直线ln与x轴和y轴分别交于点An和Bn,设△AnOBn的面积为Sn.
(1)求设△A1OB1的面积S1;
(2)求S1+S2+S3+…+S6的值.
分析:(1)因为当n=1时,直线l1:y=-2x+1与x轴和y轴分别交于点A1和B1,所以分别令y=0,x=0,即可求出A1和B1的坐标,从而求出△A1OB1的面积S1;
(2)要求S1+S2+S3+…+S6的值,需要找出Sn的规律,因为n=2时,y2=-
x+
,所以分别令y=0,x=0即可求出A2(
,0),同理可求出A2,A3…所以推出当n=n时,yn=-
x+
,分别令y=0,x=0,即可求出An(
,0),Bn(0,
),所以Sn=
×
×
,整理即可求出答案.
(2)要求S1+S2+S3+…+S6的值,需要找出Sn的规律,因为n=2时,y2=-
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| n+1 |
| n |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n |
解答:解:(1)∵y1=-2x+1,
∴A1(
,0),B1(0,1),
∴S1=
×
×1=
;
(2)∵y2=-
x+
,
∴A2(
,0),B2(0,
)
故S2=
×
×
,
∵y3=-
x+
,
∴A3(
,0),B3(0,
),
故S3=
×
×
,
…
∵yn=-
x+
,
∴An(
,0),Bn(0,
),
故Sn=
×
×
,
∵
×
=
-
,
∴S1+S2+…+S6=
(
+
+
+…+
)
=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)=
.
∴A1(
| 1 |
| 2 |
∴S1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
(2)∵y2=-
| 3 |
| 2 |
| 1 |
| 2 |
∴A2(
| 1 |
| 3 |
| 1 |
| 2 |
故S2=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
∵y3=-
| 4 |
| 3 |
| 1 |
| 3 |
∴A3(
| 1 |
| 4 |
| 1 |
| 3 |
故S3=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
…
∵yn=-
| n+1 |
| n |
| 1 |
| n |
∴An(
| 1 |
| n+1 |
| 1 |
| n |
故Sn=
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n |
∵
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
∴S1+S2+…+S6=
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 6×7 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 7 |
| 3 |
| 7 |
点评:本题是一道推理性极强的题目,主要考查一次函数的基本的性质及特殊点的坐标,解题的关键是寻找规律.
练习册系列答案
相关题目