题目内容

某通讯器材商场,计划从一厂家购进若干部新型手机以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.
(1)若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;
(2)在(1)的条件下,求盈利最多的进货方案;
(3)若该商场同时购进三种手机,且购进甲,丙两种手机用了3.9万元,预计可获得5000元利润,问这次经销商共有几种可能的方案?最低成本(进货额)多少元?
考点:二元一次方程的应用
专题:
分析:(1)商场用6万元同时购进两种不同型号的手机有三类不同的方案:①购进甲乙两种,②乙丙两种,③购进甲丙两种.然后根据购进的两种手机的部数和=40,购机两种手机用的总费用=6万元,这两个等量关系来列出方程组,解方程组即可.
(2)根据(1)得出的方案,计算出各方案的盈利额,然后比较哪种盈利较多;
(3)根据题意列出方程得出z=
65-3x
2
,y=11-
1
5
x的关系式讨论即可得出方案,再选择成本最低的方案.
解答:解:设甲种型号手机x部,乙种手机y部,丙种手机z部.
(1)根据题意得:①
x+y=40
 1800x+600y=60000 

解得
x=30
  y=10  

x+z=40
1800x+1200z=60000

解得
x=20
  z=20  

y+z=40
600y+1200z=60000

解得
y=-20
  z=60  
(不合题意,舍去).
答:有两种购买方案:甲种型号手机30部,乙种手机10部;或甲种型号手机20部,丙种手机20部;

(2)方案一盈利:200×30+100×10=7000(元)
方案二盈利:200×20+120×20=6400(元)
所以购买甲种型号手机30部,乙种手机10部所获盈利较大;

(3)由题意建立方程组为:
1800x+1200z=39000,①
200x+120z+100y=5000,②

由①得:z=
65-3x
2

由②×10-①得:y=11-
1
5
x,
∵11-
1
5
x≥0且x、y、z都是自然数,
∴x可以是15,5,
∴这次经销商共有2种可能的方案,
当x=15时,y=8,z=10,
1800x+600y+1200z=1800×15+600×8+1200×10=43800(元).
当x=5时,y=10,z=25,
1800x+600y+1200z=1800×5+600×10+1200×25=45000(元).
答:这次经销商共有2种可能的方案,最低成本(进货额)43800元.
点评:此题比较复杂,根据已知条件首先要分类讨论,然后在可能的情况下分别列出方程组,解方程组根据解的情况就可以确定购买方案.
练习册系列答案
相关题目
定义1:在△ABC中,若顶点A,B,C按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A,B,C按顺时针方向排列,则规定它的面积的相反数为△ABC的“有向面积”.“有向面积”用
.
S
表示,例如图1中,
.
S △ABC
=S△ABC,图2中,
.
S △ABC
=-S△ABC
定义2:在平面内任取一个△ABC和点P(点P不在△ABC的三边所在直线上),称有序数组(
.
S △PBC
.
S △PCA
.
S △PAB
)为点P关于△ABC的“面积坐标”,记作
.
P
(
.
S △PBC
.
S △PCA
.
S △PAB
)
,例如图3中,菱形ABCD的边长为2,∠ABC=60°,则
.
S △ABC
=
3
,点D关于△ABC的“面积坐标”
.
D
(
.
S △DBC
.
S △DCA
.
S △DAB
)
.
D
(
3
,-
3
3
)

在图3中,我们知道S△ABC=S△DBC+S△DAB-S△DCA,利用“有向面积”,我们也可以把上式表示为:
.
S △ABC
=
.
S △DBC
+
.
S △DAB
+
.
S △DCA

应用新知:
(1)如图4,正方形ABCD的边长为1,则
.
S △ABC
=
 
,点D关于△ABC的“面积坐标”是
 

探究发现:
(2)在平面直角坐标系xOy中,点A(0,2),B(-1,0).
①若点P是第二象限内任意一点(不在直线AB上),设点P关于△ABO的“面积坐标”为
.
P
(m,n,k),试探究m+n+k与
.
S △ABO
之间有怎样的数量关系,并说明理由;
②若点P(x,y)是第四象限内任意一点,请直接写出点P关于△ABO的“面积坐标”(用x,y表示);
解决问题:
(3)在(2)的条件下,点C(1,0),D(0,1),点Q在抛物线y=x2+2x+4上,求当S△QAB+S△QCD的值最小时,点Q的横坐标.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网