题目内容

已知:a,b,c分别为△ABC的三条边的长度,请你猜想b2-a2-c2+2ac的值是正数、负数还是零?你能用所学的知识说明为什么吗?
考点:因式分解的应用,三角形三边关系
专题:
分析:原式后三项提取-1变形后,利用完全平方公式分解因式,再利用平方差公式分解因式;由a,b及c为三角形的三边,利用两边之和大于第三边即可判断出因式分解后积的正负.
解答:解:b2-a2-c2+2ac的值是正数.
原式=b2-(a2+c2-2ac)=b2-(a-c)2=(a+b-c)(-a+b+c);
∵a,b,c为△ABC的三边长,
∴(a+b-c)(-a+b+c)中,(a+b-c)>0,(-a+b+c)>0,
∴(a+b-c)(-a+b+c)>0.
点评:此题考查了因式分解的应用,以及三角形的三边关系,灵活运用完全平方公式及平方差公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网