题目内容

4.如图,已知ED为⊙O的直径且ED=4,点A(不与E、D重合)为⊙O上一个动点,线段AB经过点E,且EA=EB,F为⊙O上一点,∠FEB=90°,BF的延长线交AD的延长线交于点C.
(1)求证:△EFB≌△ADE;
(2)当点A在⊙O上移动时,直接回答四边形FCDE的最大面积为多少.

分析 (1)连接FA,根据垂直的定义得到EF⊥AB,得到BF=AF,推出BF=ED,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到∠B=∠AED,得到DE∥BC,推出四边形形FCDE,得到E到BC的距离最大时,四边形FCDE的面积最大,即点A到DE的距离最大,推出当A为$\widehat{DE}$的中点时,于是得到结论.

解答 解:(1)连接FA,
∵∠FEB=90°,
∴EF⊥AB,
∵BE=AE,
∴BF=AF,
∵∠FEA=∠FEB=90°,
∴AF是⊙O的直径,
∴AF=DE,
∴BF=ED,
在Rt△EFB与Rt△ADE中,$\left\{\begin{array}{l}{BE=AE}\\{BF=DE}\\{\;}\end{array}\right.$,
∴Rt△EFB≌Rt△ADE;
(2)∵Rt△EFB≌Rt△ADE,
∴∠B=∠AED,
∴DE∥BC,
∵ED为⊙O的直径,
∴AC⊥AB,
∵EF⊥AB,
∴EF∥CD,
∴四边形FCDE是平行四边形,
∴E到BC的距离最大时,四边形FCDE的面积最大,
即点A到DE的距离最大,
∴当A为$\widehat{DE}$的中点时,
点A到DE的距离最大是2,
∴四边形FCDE的最大面积=4×2=8.

点评 本题考查了圆周角定理,平行四边形的判定和性质,全等三角形的判定和性质,等腰三角形的性质,正确的作出辅助线是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网