题目内容

已知二次函数y=x2-4x+3.
(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;
(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.
考点:抛物线与x轴的交点,二次函数的性质,二次函数的三种形式
专题:数形结合
分析:(1)配方后求出顶点坐标即可;
(2)求出A、B的坐标,根据坐标求出AB、CD,根据三角形面积公式求出即可.
解答:解:(1)y=x2-4x+3
=x2-4x+4-4+3
=(x-2)2-1,
所以顶点C的坐标是(2,-1),
当x<2时,y随x的增大而减少;
当x>2时,y随x的增大而增大;

(2)解方程x2-4x+3=0
得:x1=3,x2=1,
即A点的坐标是(1,0),B点的坐标是(3,0),
过C作CD⊥AB于D,

∵AB=2,CD=1,
∴S△ABC=
1
2
AB×CD=
1
2
×2×1=1.
点评:本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网