题目内容
17.对于平面图形上的任意两点P,Q,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点P′,Q′,保持P P′=Q Q′,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:①平移、②旋转、③轴对称,
其中一定是“同步变换”的有①(填序号).
分析 根据平移变换、旋转变换和轴对称变换的性质,依据“同步变换”的定义判断可得.
解答 解:平移的性质是把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的所有点平移的方向和距离都相等,
故平移变换一定是“同步变换”;
若将线段PQ绕点P旋转,则PP′=0,而QQ′≠0,故旋转变换不一定是“同步变换”;
将相对于直线倾斜的线段PQ经过该直线的轴对称变换,所得PP′≠QQ′,故轴对称变换不一定是“同步变换”,
故答案为:①.
点评 本题主要考查几何变换的类型,熟练掌握平移变换、旋转变换和轴对称变换的性质是解题的关键.
练习册系列答案
相关题目
7.某工厂计划招聘A、B两个工种的工人共120人,A、B两个工种的工人月工资分别为1600元和2000元.
(1)若某工厂每月支付的工人工资为220000元,那么A、B两个工种的工人各招聘多少人?设招聘A工种的工人x人,根据题设完成下列表格,并列方程求解
(2)设工厂每月支付的工人工资y元,试写出y与x之间的函数表达式,若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使工厂每月支付的工人工资最少?
(1)若某工厂每月支付的工人工资为220000元,那么A、B两个工种的工人各招聘多少人?设招聘A工种的工人x人,根据题设完成下列表格,并列方程求解
(2)设工厂每月支付的工人工资y元,试写出y与x之间的函数表达式,若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使工厂每月支付的工人工资最少?
| 工种 | 工人每月工资(元) | 招聘人数 | 工厂应付工人的约工资(元) |
| A | 1600 | x | 1600x |
| B | 2000 | 120-x | 2000(120-x) |