题目内容
已知直线ln:y=-
x+
(n是不为零的自然数).当n=1时,直线l1:y=-2x+1与x轴和y轴分别交于点A1和B1,设△A1OB1(其中O是平面直角坐标系的原点)的面积为S1;当n=2时,直线l2:y=-
x+
与x轴和y轴分别交于点A2和B2,设△A2OB2的面积为S2,…,
依此类推,直线ln与x轴和y轴分别交于点An和Bn,设△AnOBn的面积为Sn.
(1)求设△A1OB1的面积S1;
(2)求S1+S2+S3+…+S6的值.
| n+1 |
| n |
| 1 |
| n |
| 3 |
| 2 |
| 1 |
| 2 |
依此类推,直线ln与x轴和y轴分别交于点An和Bn,设△AnOBn的面积为Sn.
(1)求设△A1OB1的面积S1;
(2)求S1+S2+S3+…+S6的值.
(1)∵y1=-2x+1,
∴A1(
,0),B1(0,1),
∴S1=
×
×1=
;
(2)∵y2=-
x+
,
∴A2(
,0),B2(0,
)
故S2=
×
×
,
∵y3=-
x+
,
∴A3(
,0),B3(0,
),
故S3=
×
×
,
…
∵yn=-
x+
,
∴An(
,0),Bn(0,
),
故Sn=
×
×
,
∵
×
=
-
,
∴S1+S2+…+S6=
(
+
+
+…+
)
=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)=
.
∴A1(
| 1 |
| 2 |
∴S1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
(2)∵y2=-
| 3 |
| 2 |
| 1 |
| 2 |
∴A2(
| 1 |
| 3 |
| 1 |
| 2 |
故S2=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
∵y3=-
| 4 |
| 3 |
| 1 |
| 3 |
∴A3(
| 1 |
| 4 |
| 1 |
| 3 |
故S3=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
…
∵yn=-
| n+1 |
| n |
| 1 |
| n |
∴An(
| 1 |
| n+1 |
| 1 |
| n |
故Sn=
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n |
∵
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
∴S1+S2+…+S6=
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 6×7 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 7 |
| 3 |
| 7 |
练习册系列答案
相关题目