题目内容

计算:(1+
1
1×3
)×(1+
1
2×4
)×(1+
1
3×5
)×(1+
1
4×6
)×(1+
1
5×7
)×(1+
1
6×8
)×(1+
1
7×9
)×(1+
1
8×10
)×(1+
1
9×11
)×(1+
1
10×12
)×(1+
1
11×13
).
考点:有理数的混合运算
专题:
分析:根据有理数混合运算的法则进行计算即可.
解答:解:原式=(1+
1
3
)×(1+
1
8
)×(1+
1
15
)×(1+
1
24
)×(1+
1
35
)×(1+
1
48
)×(1+
1
63
)×(1+
1
80
)×(1+
1
99
)×(1+
1
120
)×(1+
1
143

=
4
3
×
9
8
×
16
15
×
25
24
×
36
35
×
49
48
×
64
63
×
81
80
×
100
99
×
121
120
×
144
143

=
3
2
×
16
15
×
25
24
×
36
35
×
49
48
×
64
63
×
81
80
×
100
99
×
121
120
×
144
143

=
8
5
×
25
24
×
36
35
×
49
48
×
64
63
×
81
80
×
100
99
×
121
120
×
144
143

=
5
3
×
36
35
×
49
48
×
64
63
×
81
80
×
100
99
×
121
120
×
144
143

=
12
7
×
49
48
×
64
63
×
81
80
×
100
99
×
121
120
×
144
143

=
7
4
×
64
63
×
81
80
×
100
99
×
121
120
×
144
143

=
16
9
×
81
80
×
100
99
×
121
120
×
144
143

=
9
5
×
100
99
×
121
120
×
144
143

=
20
11
×
121
120
×
144
143

=
11
6
×
144
143

=
14
13
点评:本题考查的是有理数的混合运算,熟知有理数混合运算的顺序是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网