题目内容

如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=-x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴子点C,交抛物线于点E.
(1)∠BAO=
 
°,b=
 

(2)当DE=3时,求点C坐标;
(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.
考点:二次函数综合题
专题:
分析:(1)首先求出点A、B的坐标,然后利用待定系数法求出b的值;
(2)设点C坐标为(m,0)(m<0),根据已知条件求出点E坐标为(m,7+m);由于点E在抛物线上,则可以列出方程求出m的值;
(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.
解答:解:(1)∵直线AB的解析式为y=x+4,
∴令x=0,得y=4;
令y=0,得x=-4,
∴A(-4,0),B(0,4).
∴OA=OB=4,
∴tan∠BAO=
BO
AO
=1,
∴∠BAO=45°.
又∵点A(-4,0),B(0,4)在抛物线y=-x2+bx+c上,
-16-4b+c=0
  c=4  

解得:
b=-3
c=4

故答案是:45,-3;

(2)由(1)易知,该抛物线的解析式为y=-x2-3x+4.
设点C坐标为(m,0)(m<0),则OC=-m,AC=4+m.
∵OA=OB=4,
∴∠BAC=45°,
∴△ACD为等腰直角三角形,
∴CD=AC=4+m,
∴CE=CD+DE=4+m+3=7+m,
∴点E坐标为(m,7+m).
∵点E在抛物线y=-x2-3x+4上,
∴7+m=-m2-3m+4,
解得m=-3或-1,
所以,点C的坐标(-3,0)或(-1,0);

(3)设点C坐标为(m,0)(m<0),则OC=-m,CD=AC=4+m,BD=
2
OC=-
2
m,则D(m,4+m).
∵△ACD为等腰直角三角形,△DBE和△DAC相似
∴△DBE必为等腰直角三角形.
i)若∠BED=90°,则BE=DE,
∵BE=OC=-m,
∴DE=BE=-m,
∴CE=4+m-m=4,
∴E(m,4).
∵点E在抛物线y=-x2-3x+4上,
∴4=-m2-3m+4,解得m=0(不合题意,舍去)或m=-3,
∴D(-3,1);
ii)若∠EBD=90°,则BE=BD=-
2
m,
在等腰直角三角形EBD中,DE=
2
BD=-2m,
∴CE=4+m-2m=4-m,
∴E(m,4-m).
∵点E在抛物线y=-x2-3x+4上,
∴4-m=-m2-3m+4,解得m=0(不合题意,舍去)或m=-2,
∴D(-2,2).
综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(-3,1)或(-2,2).
点评:考查了二次函数与一次函数的图象与性质、函数图象上点的坐标特征、待定系数法、相似三角形、等腰直角三角形等重要知识点.第(3)问需要分类讨论,这是本题的难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网