题目内容

20.计算:$\frac{1}{3+\sqrt{3}}$+$\frac{1}{5\sqrt{3}+3\sqrt{5}}$+$\frac{1}{7\sqrt{5}+5\sqrt{7}}$+…+$\frac{1}{121\sqrt{119}+119\sqrt{121}}$的值.

分析 根据每个加数的特点,推出一般规律为$\frac{1}{(2n+1)\sqrt{2n-1}+(2n-1)\sqrt{2n+1}}$═$\frac{1}{2}$($\frac{1}{\sqrt{2n-1}}$-$\frac{1}{\sqrt{2n+1}}$),将所得式子化简,分别取n=1,2,3,…,60,寻找抵消规律,得出结论.

解答 解:∵$\frac{1}{(2n+1)\sqrt{2n-1}+(2n-1)\sqrt{2n+1}}$
=$\frac{1}{2}$[$\frac{(2n+1)-(2n-1)}{(2n+1)\sqrt{2n-1}+(2n-1)\sqrt{2n+1}}$
=$\frac{1}{2}$[$\frac{(\sqrt{2n+1})^{2}-(\sqrt{2n-1})^{2}}{\sqrt{2n+1}×\sqrt{2n-1}(\sqrt{2n+1}+\sqrt{2n-1})}$
=$\frac{1}{2}$$\frac{\sqrt{2n+1}-\sqrt{2n-1}}{\sqrt{2n+1}×\sqrt{2n-1}}$
=$\frac{1}{2}$($\frac{1}{\sqrt{2n-1}}$-$\frac{1}{\sqrt{2n+1}}$)
∴分别取n=1,2,3,…60得
原式=$\frac{1}{2}$[(1-$\frac{1}{\sqrt{3}}$)+($\frac{1}{\sqrt{3}}$-$\frac{1}{\sqrt{5}}$)+($\frac{1}{\sqrt{5}}$-$\frac{1}{\sqrt{7}}$)+…+($\frac{1}{\sqrt{119}}$-$\frac{1}{\sqrt{121}}$)
=$\frac{1}{2}$(1-$\frac{1}{11}$)
=$\frac{5}{11}$.

点评 本题考查了二次根式的化简求值,观察式子的特点,得出一般规律,将一般规律化简代值,再观察抵消规律是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网