题目内容

11.解方程组:$\left\{\begin{array}{l}{{x}^{2}-2xy+3{y}^{2}=9,①}\\{2{x}^{2}-xy+{y}^{2}=4.②}\end{array}\right.$.

分析 根据解高次方程的方法可以求得方程组的解.

解答 解:$\left\{\begin{array}{l}{{x}^{2}-2xy+3{y}^{2}=9,①}\\{2{x}^{2}-xy+{y}^{2}=4.②}\end{array}\right.$,
①×4,得
4x2-8xy+12y2=36,③
②×9,得
18x2-9xy+9y2=36,④
④-③,得
14x2-xy-3y2=0,
∴(2x-y)(7x+3y)=0,
∴2x-y=0或7x+3y=0,
解得,y=2x或y=$-\frac{7x}{3}$,
将y=2x代入①,得
x2-2x×2x+3×(2x)2=0,
解得,x=±1,
当x=1时,y=2,当x=-1时,y=-2;
将y=$-\frac{7x}{3}$代入①,得
x=$±\frac{3\sqrt{22}}{22}$,
当x=$-\frac{3\sqrt{22}}{22}$时,y=$\frac{7\sqrt{22}}{22}$,
当x=$\frac{3\sqrt{22}}{22}$时,y=$-\frac{7\sqrt{22}}{22}$;
由上可得,原方程组的解为:$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$,$\left\{\begin{array}{l}{x=-\frac{3\sqrt{22}}{22}}\\{y=\frac{7\sqrt{22}}{22}}\end{array}\right.$,$\left\{\begin{array}{l}{x=\frac{3\sqrt{22}}{22}}\\{y=-\frac{7\sqrt{22}}{22}}\end{array}\right.$.

点评 本题考查高次方程,解答本题的关键是明确解高次方程的方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网