题目内容

已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.如果折痕FG分别与AD,AB交于点F,G(如图),AF=,求DE的长.

【解析】试题分析: 由折叠的性质易得:EF=AF=,结合DF=AD-AF=在Rt△DEF中由勾股定理即可求得DE的长. 试题解析: ∵在矩形ABCD中,AD=1,AF=, ∴DF=AD-AF=, ∵EF是由AF沿GF折叠得到的, ∴EF=AF=, 又∵矩形ABCD中,∠D=90°, ∴DE=
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网