ÌâÄ¿ÄÚÈÝ
19£®Èçͼ£¬ÒÑÖªÅ×ÎïÏߵĶ¥µã×ø±êΪE£¨1£¬0£©£¬ÓëyÖáµÄ½»µã×ø±êΪ£¨0£¬1£©£®£¨1£©Çó¸ÃÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½£»
£¨2£©A¡¢BÊÇxÖáÉÏÁ½¸ö¶¯µã£¬ÇÒA¡¢B¼äµÄ¾àÀëΪAB=4£¬AÔÚBµÄ×ó±ß£¬¹ýA×÷AD¡ÍxÖá½»Å×ÎïÏßÓÚD£¬¹ýB×÷BC¡ÍxÖá½»Å×ÎïÏßÓÚC£®
¢Ùµ±CD¡ÎxÖáʱ£¬ËıßÐÎABCDÊÇÕý·½ÐΣ»
¢Úµ±CD¡ÎxÖáʱ£¬ÔÚÏß¶ÎBDÉÏÊÇ·ñ´æÔÚÕâÑùµÄµãP£¬Ê¹µÃ¡÷PAEµÄÖܳ¤×îС£¿Èô´æÔÚ£¬Ö±½Óд³öµãPµÄ×ø±ê¼°Õâʱ¡÷PAEµÄÖܳ¤£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©ÔÚ£¨2£©µÄ»ù´¡ÉÏ£¬Ö±ÏßBDÉÏÊÇ·ñ´æÔÚÕâÑùµÄµãQ£¬Ê¹µÃ¡÷BAQÓë¡÷ACEÏàËÆ£¿Èô´æÔÚ£¬Ö±½Óд³öµãQµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©ÉèÅ×ÎïÏߵĽâÎöʽΪ£ºy=a£¨x-1£©2£¬°Ñµã£¨0£¬1£©´úÈëÅ×ÎïÏߵĽâÎöʽÇóµÃaµÄÖµ¼´¿É£»
£¨2£©¢ÙÒÀ¾ÝÌâÒâ¿ÉÇóµÃA¡¢B¡¢C¡¢DµÄ×ø±ê£¬´Ó¶ø¿É¶ÔËıßÐÎABCDµÄÐÎ×´×÷³öÅжϣ»¢ÚÁ¬½áCE½»BDÓëµãP£¬ÒÀ¾ÝÖá¶Ô³ÆµÄÐÔÖÊ¿ÉÖªAP=PC£¬¹Ê´Ëµ±E¡¢P¡¢CÔÚÒ»ÌõÖ±ÏßÉÏʱ£¬¡÷APEµÄÖܳ¤×îС£¬È»ºóÇóµÃÖ±ÏßECºÍÖ±ÏßBDµÄ½âÎöʽ£¬Óɺ¯Êý½âÎöʽ¿ÉÇóµÃÁ½Ö±ÏߵĽ»µãPµÄ×ø±ê£¬È»ºóÇóµÃCEµÄ³¤´¦£¬×îºóÒÀ¾Ý¡÷PAEµÄÖܳ¤=AE+ECÇó½â¼´¿É£»
£¨3£©¹ýµãQ×÷QF¡ÍAB£¬´¹×ãΪF£¬µ±$\frac{QB}{AB}$=$\frac{AE}{AC}$ʱ£¬¡÷BAQÓë¡÷ACEÏàËÆ£¬´Ó¶ø¿ÉÇóµÃBQµÄ³¤£¬È»ºóÔÚRt¡÷QFBÖÐÇóµÃQF¡¢BFµÄ³¤£¬ÓÚÊǿɵõ½µãQµÄ×ø±ê£®
½â´ð ½â£º£¨1£©ÉèÅ×ÎïÏߵĽâÎöʽΪ£ºy=a£¨x-1£©2£¬°Ñµã£¨0£¬1£©´úÈëÅ×ÎïÏßÓУº1=a£¨0-1£©2£¬µÃ£ºa=1£®
ËùÒÔÅ×ÎïÏߵĽâÎöʽΪ£ºy=£¨x-1£©2£»
£¨2£©¢Ù¡ßAD¡ÎBC£¬AB=4£¬E£¨1£¬0£©£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬0£©£®
µ±x=-1ʱ£¬y=4£¬µ±x=3ʱ£¬y=4£¬
¡àD£¨-1£¬4£©£¬C£¨3£¬4£©£®
¡àËıßÐÎABCDÊÇÕý·½ÐΣ¬
¹Ê´ð°¸Îª£ºÕý·½£»
¢ÚÈçͼËùʾ£º![]()
¡ßËıßÐÎABCDÊǾØÐΣ¬
¡àµãAµãC¹ØÓÚBD¶Ô³Æ£¬Ö±ÏßCEÓëBDµÄ½»µã¾ÍÊǵãP£®
´Ëʱ£ºA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨3£¬4£©£¬D£¨-1£¬4£©£¬E£¨1£¬0£©£®
ÔÚRt¡÷BECÖУ¬ÒÀ¾Ý¹´¹É¶¨Àí¿ÉÇóµÃEC=2$\sqrt{5}$£®
ÉèÖ±ÏßCEµÄ½âÎöʽΪy=kx+b£¬½«µãEºÍµãCµÄ×ø±ê´úÈëµÃ$\left\{\begin{array}{l}{k+b=0}\\{3k+b=4}\end{array}\right.$£¬½âµÃ£ºk=2£¬b=-2£¬
¡àÖ±ÏßCEµÄ½âÎöʽ£ºy=2x-2£®
ÉèÖ±ÏßBDµÄ½âÎöʽ£ºy=mx+n£¬½«µãB¡¢DµÄ×ø±ê´úÈëµÃ£º$\left\{\begin{array}{l}{3m+n=0}\\{-m+n=4}\end{array}\right.$£¬½âµÃ£ºm=-1£¬n=3£®
¡àÖ±ÏßBDµÄ½âÎöʽΪy=-x+3£®
½«y=2x-2Óëy=-x+3ÁªÁ¢µÃ£º$\left\{\begin{array}{l}{y=2x-2}\\{y=-x+3}\end{array}\right.$£¬½âµÃ£ºx=$\frac{5}{3}$£¬y=$\frac{4}{3}$£®
¡àµãPµÄ×ø±êΪ£¨$\frac{5}{3}$£¬$\frac{4}{3}$£©£®
¡à¡÷PAEµÄÖܳ¤=AE+EC=2+2$\sqrt{5}$£®
£¨3£©ÈçͼËùʾ£º¹ýµãQ×÷QF¡ÍAB£¬´¹×ãΪF£®![]()
¡ßËıßÐÎABCDΪÕý·½ÐΣ®
¡à¡ÏQBA=¡ÏCAE=45¡ã£®
¡àµ±$\frac{QB}{AB}$=$\frac{AE}{AC}$ʱ£¬¡÷BAQÓë¡÷ACEÏàËÆ£®
¡à$\frac{BQ}{4}$=$\frac{2}{4\sqrt{2}}$£¬½âµÃ£ºBQ=$\sqrt{2}$£®
ÔÚRt¡÷QFBÖУ¬¡ÏQBF=45¡ã£¬
¡àQF=BF=$\frac{\sqrt{2}}{2}$¡Á$\sqrt{2}$=1£®
¡àµãQµÄ×ø±êΪ£¨2£¬1£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁË´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý¡¢¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢¹´¹É¶¨Àí¡¢Öá¶Ô³ÆÂ·¾¶×î¶ÌÎÊÌâ¡¢ÏàËÆÈý½ÇÐεÄÅж¨¶¨Àí£¬ÊìÁ·ÕÆÎÕÏà¹ØÖªÊ¶ÊǽâÌâµÄ¹Ø¼ü£®
| A£® | abÓëabc | B£® | -mnÓë2mn | C£® | 0.5x3y2Óë2x2y3 | D£® | xy2Óëxz2 |