题目内容

8.如图,已知∠EFG+∠BDG=180°,∠DEF=∠B,求证:∠AED=∠C.

分析 先根据平角的定义得出∠EFD+∠EFG=180°,再由同角的补角相等及内错角相等,两直线平行可判断出BD∥EF,再根据两直线平行,同旁内角互补可得到∠BDE+∠DEF=180°,进而可判断出DE∥BC,由平行线的性质即可得出答案.

解答 证明:∵∠EFD+∠EFG=180°,
∠BDG+∠EFG=180°,
∴∠BDG=∠EFD,
∴BD∥EF,
∴∠BDE+∠DEF=180°,
又∵∠DEF=∠B,
∴∠BDE+∠B=180°,
∴DE∥BC,
∴∠AED=∠C.

点评 本题主要考查了平行线的判定与性质,熟知平行线的判定与性质的区别是解答此题的关键,即性质与判定的已知和结论正好相反,都是角的关系与平行线相关.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网