题目内容

8.如图,有一个直角三角形纸片,两直角边AB=6cm,BC=8cm,现将直角边BC沿直线BD折叠,使点C落在点E处,求三角形BDF的面积是多少?

分析 由折叠的性质得到三角形BDC与三角形BDE全等,进而得到对应边相等,对应角相等,再由两直线平行内错角相等,等量代换及等角对等边得到FD=FB,设FD=FB=xcm,则AF=(8-x)cm,在直角三角形AFB中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出FD的长,进而求出三角形BDF面积.

解答 解:由折叠可得:△BDC≌△BDE,
∴∠CBD=∠EBD,BC=BE=8cm,ED=DC=AB=6cm,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ADB=∠EBD,
∴FD=FB,
设FD=FB=xcm,则有AF=AD-FD=(8-x)cm,
在Rt△ABF中,根据勾股定理得:x2=(8-x)2+62
解得:x=$\frac{25}{4}$,即FD=$\frac{25}{4}$cm,
则S△BDF=$\frac{1}{2}$FD•AB=$\frac{75}{4}$cm2

点评 此题考查了翻折变换(折叠问题),涉及的知识有:折叠的性质,全等三角形的性质,平行线的性质,等腰三角形的判定,以及勾股定理,熟练掌握性质及定理是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网