题目内容
15.(1)求点A到航线MN的距离;
(2)在航线MN上有点B,且∠MAB=15°,求轮船从M处到B处的距离.
分析 (1)过A作AH⊥MN于H.由方向角的定义可知∠QMB=30°,∠QMA=60°,那么∠NMA=∠QMA-∠QMB=30°.解直角△AMH,得出AH=$\frac{1}{2}$AM=40海里,MH=$\sqrt{3}$AH=40$\sqrt{3}$海里;
(2)先根据直角三角形两锐角互余求出∠HAM=60°,由∠MAB=15°,得出∠HAB=∠HAM-∠MAB=45°,那么△AHB是等腰直角三角形,得出BH=AH=40海里.
解答 解:(1)如图,过A作AH⊥MN于H.
∵∠QMB=30°,∠QMA=60°,
∴∠NMA=∠QMA-∠QMB=30°.
在直角△AMH中,∵∠AHM=90°,∠AMH=30°,AM=80海里,
∴AH=$\frac{1}{2}$AM=40海里,MH=$\sqrt{3}$AH=40$\sqrt{3}$海里,
即点A到航线MN的距离为40海里;
(2)在直角△AMH中,∵∠AHM=90°,∠AMH=30°,
∴∠HAM=60°,
∵∠MAB=15°,
∴∠HAB=∠HAM-∠MAB=45°,
∵∠AHB=90°,
∴BH=AH=40海里,
∵MH=40$\sqrt{3}$海里,
∴MB=(40$\sqrt{3}$-40)海里.
点评 本题考查了解直角三角形的应用-方向角问题,含30°角的直角三角形的性质,等腰直角三角形的判定与性质,直角三角形两锐角互余的性质,准确作出辅助线构造直角三角形是解题的关键.
练习册系列答案
相关题目
5.三角形中,到三边距离相等的点是( )
| A. | 三条角平分线的交点 | B. | 三边垂直平分线的交点 | ||
| C. | 三条高线的交点 | D. | 三条中线的交点 |
7.
如图,为测量一幢大楼的高度,在地面上距离楼底O点30m的点A处,测得楼顶B点的仰角∠OAB=65°,则这幢大楼的高度为( )m.
| A. | 30•sin65° | B. | $\frac{30}{cos65°}$ | C. | 30•tan65° | D. | $\frac{30}{tan65°}$ |