题目内容

18.如图所示,AB=AC,点D,E分别在AC,AB上,AF⊥CE,AG⊥BD,垂足分别为F,G,AF=AG,下列结论:①∠B=∠C;②∠EAF=∠DAG;③AD=AE;④BE=CD
其中正确的是①②③④(只填序号)

分析 根据HL可证Rt△AGB≌Rt△AFC,从而得出∠B=∠C,进而得出∠EAF=∠DAG,再利用ASA证明△AEF≌△AGD,从而得出AD=AE,BE=CD.

解答 解:∵AG⊥BD,AF⊥CE,
∴△AGB和△AFC是直角三角形,
在Rt△AGB和Rt△AFC中,
$\left\{\begin{array}{l}{AB=AC}\\{AG=AF}\end{array}\right.$,
∴Rt△AGB≌Rt△AFC(HL),
∴∠B=∠C,∠BAG=∠CAF,故①正确;
又∵∠BAG=∠EAF+∠FAG,∠CAF=∠DAG+∠FAG,
∴∠EAF=∠DAG,故②正确;
在△AFE和△AGD中,
$\left\{\begin{array}{l}{∠AFE=∠AGD}&{\;}\\{AF=AG}&{\;}\\{∠EAF=∠DAG}&{\;}\end{array}\right.$,
∴△AFE≌△AGD(ASA),
∴AD=AE,故③正确;
∵AB=AC,
∴AB-AE=AC-AD,
∴BE=CD,故④正确.
故答案为:①②③④.

点评 本题主要考查了直角三角形全等的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网