ÌâÄ¿ÄÚÈÝ

4£®ÒÑÖª£ºÖ±Ïßy=-$\frac{3}{4}$x+3ÓëxÖáyÖá·Ö±ð½»ÓÚµãA¡¢µãB£¬Å×ÎïÏßy=-$\frac{3}{8}$x2+bx+c¾­¹ýµãAºÍµãB£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãC£¨0£¬2£©£¬µãP£¨m£¬0£©ÊÇÏß¶ÎOAÉϵÄÒ»µã£¨²»ÓëO¡¢AÖØºÏ£©£¬¹ýµãP×÷PM´¹Ö±xÖᣬ½»Å×ÎïÏßÓÚµãM£¬Á¬½ÓBM¡¢AC¡¢AM£¬ÉèËıßÐÎACBMµÄÃæ»ýΪS£¬ÇóSÓëmµÄº¯Êý¹ØÏµÊ½£¨²»ÒªÇóд³ö×Ô±äÁ¿µÄȡֵ·¶Î§£©£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µãDÊÇÏß¶ÎOPµÄÖе㣬Á¬½ÓBD£¬µ±SÈ¡×î´óֵʱ£¬ÊÔÇóÖ±ÏßBDÓëACËù³ÉµÄÈñ½Ç¶ÈÊý£®

·ÖÎö £¨1£©¸ù¾ÝÒ»´Îº¯Êý½âÎöʽÇó³öA¡¢B×ø±ê£¬´úÈë¶þ´Îº¯Êý½âÎöʽ¼´¿ÉÇó³ö¶þ´Îº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝÌâÒâ×÷³ö¸¨ÖúÏߣ¬¸ù¾ÝS=SÌÝÐÎOPMB-+S¡÷APM-S¡÷OAC¿ÉµÃº¯Êý½âÎöʽ£»
£¨3£©£©ÓÉ£¨2£©Öк¯Êý¹ØÏµÊ½µÃ³öm¼°SµÄÖµ£¬¸ù¾ÝµãDÊÇÏß¶ÎOPµÄÖеãµÃ³öDµã×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßAC¡¢BDµÄ½âÎöʽ£¬¹Ê¿ÉµÃ³öGµã×ø±ê£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽÇó³öDGµÄ³¤£¬¹ýµãD×÷DF¡ÍACÓÚµãF£¬Çó³öÖ±ÏßDFµÄ½âÎöʽ£¬¹Ê¿ÉµÃ³öFµãµÄ×ø±ê£¬Çó³öDFµÄ³¤£¬ÀûÓÃÈñ½ÇÈý½Çº¯ÊýµÄ¶¨Òå¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÔÚy=-$\frac{3}{4}$x+3ÖУ¬
µ±y=0ʱ£¬x=4£¬ËùÒÔA£¨4£¬0£©£¬
µ±x=0ʱ£¬y=3£¬ËùÒÔB£¨0£¬3£©£¬
¡ßÅ×ÎïÏßy=-$\frac{3}{8}$x2+bx+c¾­¹ýA¡¢B£¬
¡à$\left\{\begin{array}{l}-6+4b+c=0\\ c=3\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}b=\frac{3}{4}\\ c=3\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪ£ºy=-$\frac{3}{8}$x2+$\frac{3}{4}$x+3£»

£¨2£©Èçͼ1Ëùʾ£¬
¡ßP£¨m£¬0£©£¬
¡àOP=m£¬PM=-$\frac{3}{8}$m2+$\frac{3}{4}$m+3
¡àS=SÌÝÐÎOPMB+S¡÷APM-S¡÷OAC
=$\frac{1}{2}$£¨PM+OB£©•OP+$\frac{1}{2}$AP•PM-$\frac{1}{2}$OA•OC
=$\frac{1}{2}$£¨-$\frac{3}{8}$m2+$\frac{3}{4}$m+3+3£©•m+$\frac{1}{2}$£¨4-m£©£¨-$\frac{3}{8}$m2+$\frac{3}{4}$m+3£©-$\frac{1}{2}$¡Á4¡Á2
=-$\frac{3}{4}$m2+3m+2£¨0£¼m£¼4£©£»

£¨3£©¡ßÓÉ£¨2£©ÖªS=-$\frac{3}{4}$m2+3m+2£¬
¡àµ±m=2ʱ£¬S×î´ó=5£¬
¡àP£¨2£¬0£©£®
¡ßµãDÊÇÏß¶ÎOPµÄÖе㣬
¡àD£¨1£¬0£©£®
ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¨k¡Ù0£©£¬
¡ßA£¨4£¬0£©£¬C£¨0£¬2£©£¬
¡à$\left\{\begin{array}{l}0=4k+b\\ b=2\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}k=-\frac{1}{2}\\ b=2\end{array}\right.$£¬
¡àÖ±ÏßACµÄ½âÎöʽΪy=-$\frac{1}{2}$x+2£®
ÉèÖ±ÏßBDµÄ½âÎöʽΪy=ax+c£¨a¡Ù0£©£¬
¡ßB£¨0£¬3£©£¬D£¨1£¬0£©£¬
¡à$\left\{\begin{array}{l}c=3\\ a+c=0\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}a=-3\\ c=3\end{array}\right.$£¬
¡àÖ±ÏßBDµÄ½âÎöʽΪy=-3x+3£¬
¡à$\left\{\begin{array}{l}y=-\frac{1}{2}x+2\\ y=-3x+3\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}x=\frac{2}{5}\\ y=\frac{9}{5}\end{array}\right.$£¬
¡àG£¨$\frac{2}{5}$£¬$\frac{9}{5}$£©£¬
¡àDG=$\sqrt{£¨1-\frac{2}{5}£©^{2}+£¨\frac{9}{5}£©^{2}}$=$\sqrt{\frac{9}{25}+\frac{81}{25}}$=$\frac{3\sqrt{10}}{5}$£®
¹ýµãD×÷DF¡ÍACÓÚµãF£¬
¡ßÖ±ÏßACµÄ½âÎöʽΪy=-$\frac{1}{2}$x+2£¬
¡àÉèÖ±ÏßDFµÄ½âÎöʽΪy=2x+d£¬
¡ßD£¨1£¬0£©£¬
¡à2+d=0£¬½âµÃd=-2£¬
¡àÉèÖ±ÏßDFµÄ½âÎöʽΪy=2x-2£¬
¡à$\left\{\begin{array}{l}y=-\frac{1}{2}x+2\\ y=2x-2\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}x=\frac{8}{5}\\ y=\frac{6}{5}\end{array}\right.$£¬
¡àF£¨$\frac{8}{5}$£¬$\frac{6}{5}$£©£¬
¡àDF=$\sqrt{£¨1-\frac{8}{5}£©^{2}+£¨\frac{6}{5}£©^{2}}$=$\frac{3\sqrt{5}}{5}$£¬
¡àsin¡ÏDGF=$\frac{DF}{DG}$=$\frac{\frac{3\sqrt{5}}{5}}{\frac{3\sqrt{10}}{5}}$=$\frac{\sqrt{2}}{2}$£¬
¡à¡ÏDGF=45¡ã£¬¼´Ö±ÏßBDÓëACËù³ÉµÄÈñ½ÇÊÇ45¡ã£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌâ£¬Éæ¼°´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ¡¢Èý½ÇÐÎÃæ»ý¹«Ê½¡¢º¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷µÈ֪ʶ£¬×ÛºÏÐÔÇ¿£¬ÖµµÃ¹Ø×¢£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø