题目内容

20.如图,正方形ABCD的边长为4,其中它的中心与原点重合,AB∥x轴,BC∥y轴,反比例函数y=$\frac{2}{x}$与y=-$\frac{2}{x}$的图象均与正方形ABCD的边相交,则图中阴影面积的和是(  )
A.4B.6C.8D.10

分析 先根据两反比例函数的解析式确定出两函数图象之间的关系,再根据正方形ABCD的对称中心是坐标原点O可知图中四个小正方形全等,反比例函数的图象与两坐标轴所围成的图形全等,故阴影部分的面积即为两个小正方形即大正方形面积的一半.

解答 解:由两函数的解析可知:两函数的图象关于x轴对称.
∵正方形ABCD的对称中心是坐标原点O,
∴四个小正方形全等,
∴反比例函数的图象与两坐标轴所围成的图形全等,
∴阴影部分的面积=$\frac{1}{2}$S□ABCD=$\frac{1}{2}$×16=8.
故选:C.

点评 本题考查的是关于x轴对称的反比例函数解析式的特点,解答此题的关键是根据函数解析式判断出两函数图象的特点,再根据正方形的面积即可解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网