题目内容
10.如图,在三角形各顶点作半径为1的圆(每两个圆都相互外离),则图中三个扇形的面积和为$\frac{π}{2}$,在四边形各顶点作半径为1的圆(每两个圆都相互外离),则图中四个扇形的面积和为π;在2015边形的每一个顶点作半径为1的圆(每两个圆都相互外离),则2015边形中扇形的面积和为$\frac{2013}{2}$π.分析 根据题意结合多边形内角和定理以及扇形面积公式求出即可.
解答 解:如图所示:2015边形的内角和为:(2015-2)×180°=2013×180°,
则2015边形中扇形的面积和为:$\frac{2013×180π×{1}^{2}}{360}$=$\frac{2013}{2}$π.
故答案为:$\frac{2013}{2}$π.
点评 此题主要考查了扇形面积公式以及多边形内角和定理,得出多边形的内角和是解题关键.
练习册系列答案
相关题目
1.甲、乙两商场同时开业,为了吸引顾客,都举办有奖酬宾活动,凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外,其他全部相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券的多少(如下表).
甲商场:
乙商场:
(1)请你用列表法(或画树状图)求出摸到一红一白的概率;
(2)如果只考虑中奖因素,你将会选择去哪个商场购物?请说明理由.
甲商场:
| 球 | 两红 | 一红一白 | 两白 |
| 礼金券(元) | 5 | 10 | 5 |
| 球 | 两红 | 一红一白 | 两白 |
| 礼金券(元) | 10 | 5 | 10 |
(2)如果只考虑中奖因素,你将会选择去哪个商场购物?请说明理由.
5.
李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项.
调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)
调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,请你根据以上提供的信息,解答下列问题:
(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些?
(2)升入高中后,请你对他俩今后的发展给每人提一条建议.
(3)扇形统计图中“优秀率”是多少?
(4)“不及格”在扇形统计图中所占的圆心角是多少度?
调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)
| 综合素质 | 考试成绩 | 体育测试 | |
| 满分 | 100 | 100 | 100 |
| 小聪 | 72 | 98 | 60 |
| 小亮 | 90 | 75 | 95 |
(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些?
(2)升入高中后,请你对他俩今后的发展给每人提一条建议.
(3)扇形统计图中“优秀率”是多少?
(4)“不及格”在扇形统计图中所占的圆心角是多少度?