题目内容
10.分析 根据三角形内角和定理求出∠ABC的度数,根据线段的垂直平分线的性质得到∠DBA的度数,DA=DB,计算即可.
解答 解:∵AB=AC,∠A=40°,
∴∠ABC=∠C=70°,
∵MN是AB的垂直平分线,
∴DA=DB,
∴∠DBA=∠A=40°,
∴∠DBC=30°;
∵AB=AC,AB=10,DC=3,
∴BD=DA=10-3=7.
故答案为:30,7.
点评 本题考查的是等腰三角形的性质,线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
练习册系列答案
相关题目
1.抛物线y=ax2+bx-3经过点(2,4),则代数式8a+4b+1的值为( )
| A. | 3 | B. | 9 | C. | 15 | D. | -15 |
5.下列计算错误的是( )
| A. | 3$\sqrt{3}$-$\sqrt{3}$=2$\sqrt{3}$ | B. | a0=1 | C. | -2+|-2|=0 | D. | (-3)-2=$\frac{1}{9}$ |
19.将抛物线y=(x-1)2+2向右平移3个单位长度,再向上平移2个单位长度后,得到的抛物线的解析式为( )
| A. | y=(x-4)2+4 | B. | y=(x-4)2+6 | C. | y=(x+2)2+6 | D. | y=(x-1)2+4 |