题目内容

4.解下列方程组:
(1)$\left\{\begin{array}{l}{y=2x-3}\\{4x-3y=1}\end{array}\right.$.                  
(2)$\left\{{\begin{array}{l}{x+2y-z=6}\\{2x+y+z=9}\\{3x+4y+z=18}\end{array}}\right.$.

分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{y=2x-3①}\\{4x-3y=1②}\end{array}\right.$,
把①代入②得:4x-3(2x-3)=1,
解得:x=4,
把x=4代入①得:y=5,
则方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+2y-z=6①}\\{2x+y+z=9②}\\{3x+4y+z=18③}\end{array}\right.$,
①+②得:x+y=5④,
①+③得:2x+3y=12⑤,
⑤-④×2得:y=2,
把y=2代入④得:x=3,
把x=3,y=2代入①得:z=1,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=2}\\{z=1}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网