题目内容
13.分析 由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出AB•OB的值,根据配方法求出(AB+OB)2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论.
解答 解:∵点A在函数y=$\frac{4}{x}$(x>0)的图象上,
∴设点A的坐标为(n,$\frac{4}{n}$)(n>0).
在Rt△ABO中,∠ABO=90°,OA=4,
∴OA2=AB2+OB2,
又∵AB•OB=$\frac{4}{n}$•n=4,
∴(AB+OB)2=AB2+OB2+2AB•OB=42+2×4=24,
∴AB+OB=2$\sqrt{6}$,或AB+OB=-2$\sqrt{6}$(舍去).
∴C△ABO=AB+OB+OA=2$\sqrt{6}$+4.
故答案为:2$\sqrt{6}$+4.
点评 本题考查了反比例函数图象上点的坐标特征、完全平方公式以及三角形的周长,解题的关键是求出AB+OB的值.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用完全平方公式直接求出两直角边之和是关键.
练习册系列答案
相关题目
1.
如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4$\sqrt{3}$,则S阴影=( )
| A. | 2π | B. | $\frac{8}{3}$π | C. | $\frac{4}{3}$π | D. | $\frac{3}{8}$π |
8.大家翘首以盼的长株潭城际铁路将于2016年年底通车,通车后,从长沙到株洲只需24分钟,从长沙到湘潭只需25分钟,这条铁路全长99500米,则数据99500用科学记数法表示为( )
| A. | 0.995×105 | B. | 9.95×105 | C. | 9.95×104 | D. | 9.5×104 |
2.估计$\sqrt{7}$+1的值( )
| A. | 在1和2之间 | B. | 在2和3之间 | C. | 在3和4之间 | D. | 在4和5之间 |