题目内容

20.如图,P是等边三角形ABC内任一点,过点P作PD∥AB,PE∥BC,PF∥AC,分别交BC、AC、AB于点D、E、F.求证:PD+PE+PF=BC.

分析 因为要求证明PD+PE+PF=AB,而PD、PE、PF并不在同一直线上,因此和AB无法进行比较,必须把三者转移到AB上,方可解答.

解答 证明:延长EP交AB于点G,延长DP交AC与点H,
∵PD∥AB,PE∥BC,PF∥AC,
∴四边形AFPH、四边形PDBG均为平行四边形,
∴PD=BG,PH=AF.
又∵△ABC为等边三角形,
∴△FGP和△HPE也是等边三角形,
∴PE=PH=AF,PF=GF,
∴PE+PD+PF=AF+BG+FG=AB=BC.

点评 本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网