题目内容

精英家教网①如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD,BD,BC,AC的中点.
(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论;
②如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC,交CE的延长线与点F.求证:AB垂直平分DF.
分析:①(1)由三角形中位线知识可得EF=GH,EF∥GH,∴四边形EFGH是平行四边形.
(2)要是菱形,只需增加相邻两边相等,如要得到EF=GF,由中位线知识,只须AB=CD.
②∵FB∥AC,∠ACB=90°∴∠FBC=90°,由AC=BC、∠ACB=90°∴∠DBA=45°,AB是∠CBF平分线.证明Rt△ADC≌Rt△FBC,所以DB=FB,所以,AB垂直平分DF(等腰三角形中的三线合一定理).
解答:①(1)证明:
∵E、F分别是AD、BD中点,
∴EF∥AB,EF=
1
2
AB,
同理GH∥AB,GH=
1
2
AB,
∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.

(2)解:当四边形ABCD满足AB=CD时,四边形EFGH是菱形.
证明:F、G分别是BD、BC中点,所以GF=
1
2
CD,
∵AB=CD,∴EF=GF
又∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.

②证明:∵∠ACB=90°,Rt△ADC中,∠1+∠2=90°,精英家教网
∵AD⊥CF,在Rt△EDC中,∠3+∠2=90°,得:∠1=∠3.
∵FB∥AC,∠ACB=90°,∴∠FBC=90°,得:△FBC是直角三角形.
∵AC=BC,∠1=∠3,△FBC是直角三角形
∴Rt△ADC≌Rt△FBC.
∴CD=FB,已知CD=DB,可得:DB=FB.
由AC=BC、∠ACB=90°,可得:∠4=45°,AB是∠CBF平分线.
所以,AB垂直平分DF(等腰三角形中的三线合一定理).
点评:本题考查了中位线知识,平行四边形和菱形的判断方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网