题目内容
5.分析 根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.
解答
解:∵AM⊥b,
∴∠3=90°-∠2=90°-23°=67°,
∵直线a∥b,
∴∠1=∠3=67°.
故答案为:67°.
点评 本题考查了平行线的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
练习册系列答案
相关题目
13.下列方程中,是一元二次方程的是( )
| A. | x2-x+4=0 | B. | x=$\frac{1}{x}$ | C. | x2-3x-2y=0 | D. | x2+2=(x-1)(x+2) |
20.若关于x的分式方程$\frac{x}{x-3}$-m=$\frac{{m}^{2}}{m-3}$无解,则m的值为( )
| A. | 1或±$\sqrt{3}$ | B. | ±$\sqrt{3}$ | C. | 3 | D. | 1或±3 |
10.方程组$\left\{\begin{array}{l}{x=y+2}\\{x+y=4}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$ |