题目内容

1.如图,在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于点D,过D作⊙O的切线DE交BC于点E.
(1)若OA=3时(如图①),则ED与EC大小关系为:ED=EC(直接填写即可);
(2)若OA<3时(如图②),(1)中的关系是否还成立?证明你的结论;
(3)若OA>3时(如图③),⊙O恰好经过BC的中点F,求此时⊙O的半径.

分析 (1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;
(2)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;
(3)根据直角三角形的性质结合圆的基本性质,求出圆的半径即可.

解答 解:(1)如图1,连接OD,

∵DE为⊙O的切线,
∴∠ODE=90°,
∴∠CDE+∠ADO=90°,
∵AB=6,BC=8,AC=10,
∴∠ABC=90°,
∴∠A+∠C=90°,
∵AO=DO,
∴∠A=∠ADO,
∴∠CDE=∠C,
∴ED=EC,
故答案为:=;

(2)如图2,连接OD,

∵DE为⊙O的切线,
∴∠ODE=90°,
∴∠CDE+∠ADO=90°,
∵AB=6,BC=8,AC=10,
∴∠ABC=90°,
∴∠A+∠C=90°,
∵AO=DO,
∴∠A=∠ADO,
∴∠CDE=∠C,
∴ED=EC;

(3)由BC中点为F,如图3,连接OF、OD、OE,

设OA=r,则OB=6-r,且BF=$\frac{1}{2}$BC=4,
在Rt△OBF中,由勾股定理可得:OF2=OB2+BF2
即r2=(6-r)2+42
解得:r=$\frac{13}{3}$.

点评 本题主要考查圆的切线的性质及圆的基本性质、勾股定理等的综合应用,一般出现切点连接圆心和切点是常用的辅助线,再结合直角三角形进行求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网