题目内容
如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).
第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;
第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;
依此操作下去…
(1)图2中的△EFD是经过两次操作后得到的,其形状为 ,求此时线段EF的长;
(2)若经过三次操作可得到四边形EFGH.
①请判断四边形EFGH的形状为 ,此时AE与BF的数量关系是 ;
②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.
![]()
![]()
【考点】几何变换综合题.
【分析】(1)由旋转性质,易得△EFD是等边三角形;利用等边三角形的性质、勾股定理求出EF的长;
(2)①四边形EFGH的四边长都相等,所以是正方形;利用三角形全等证明AE=BF;
②求面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围.
【解答】解:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.
在Rt△ADE与Rt△CDF中,
![]()
![]()
∴Rt△ADE≌Rt△CDF(HL)
∴AE=CF.
设AE=CF=x,则BE=BF=4﹣x
∴△BEF为等腰直角三角形.
∴EF=![]()
BF=![]()
(4﹣x).
∴DE=DF=EF=![]()
(4﹣x).
在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x2+42=[![]()
(4﹣x)]2,
解得:x1=8﹣4![]()
,x2=8+4![]()
(舍去)
∴EF=![]()
(4﹣x)=4![]()
﹣4![]()
.
DEF的形状为等边三角形,EF的长为4![]()
﹣4![]()
.
(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:
依题意画出图形,如答图1所示:
![]()
![]()
由旋转性质可知,EF=FG=GH=HE,∠EFG=90°,∴四边形EFGH的形状为正方形.
∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3.
∵∠3+∠4=90°,∠2+∠3=90°,
∴∠2=∠4.
在△AEH与△BFE中,
![]()
![]()
∴△AEH≌△BFE(ASA)
∴AE=BF.
②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,
∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.
∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×![]()
x(4﹣x)=2x2﹣8x+16.
∴y=2x2﹣8x+16(0<x<4)
∵y=2x2﹣8x+16=2(x﹣2)2+8,
∴当x=2时,y取得最小值8;当x=0时,y=16,
∴y的取值范围为:8≤y<16.
【点评】本题是几何变换综合题,以旋转变换为背景考查了正方形、全等三角形、等边三角形、等腰直角三角形、勾股定理、二次函数等知识点.本题难度不大,着重对于几何基础知识的考查,是一道好题.