ÌâÄ¿ÄÚÈÝ
8£®Èçͼ¢Ù£¬ÒÑÖªµãA£¨-3£¬0£©£¬¶Ô³ÆÖáΪx=$\frac{5}{2}$µÄÅ×ÎïÏßy=$\frac{2}{3}{x^2}$+bx+cÒÔyÖá½»ÓÚµãB£¨0£¬4£©£¬ÒÔxÖá½»ÓÚµãD£®£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¹ýµãB×÷BC¡ÎxÖá½»Å×ÎïÏßÓÚµãC£¬Á¬½ÓDC£®ÅжÏËıßÐÎABCDµÄÐÎ×´£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Èçͼ¢Ú£¬¶¯µãE£¬F·Ö±ð´ÓµãA£¬Cͬʱ³ö·¢£¬Ô˶¯ËٶȾùΪ1cm/s£¬µãFÑØACÔ˶¯£¬µ½¶Ô½ÇÏßACÓëBDµÄ½»µãMÍ£Ö¹£¬´ËʱµãEÔÚADÉÏÔ˶¯Ò²Í£Ö¹£®ÉèÔ˶¯Ê±¼äΪt£¨s£©£¬¡÷BEFµÄÃæ»ýΪS£¨cm2£©£®ÇóSÓëtµÄº¯Êý¹ØÏµÊ½£®
·ÖÎö £¨1£©ÓÉA£¨-3£¬0£©£¬¶Ô³ÆÖáΪx=$\frac{5}{2}$£¬B£¨0£¬4£©µÃ·½³Ì×飬Çó½â¼´¿É£»
£¨2£©ËıßÐÎABCDÊÇÁâÐΣ®ÏÈÇó³öµãD¡¢CµÄ×ø±ê£¬ÒÑÖªA¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-3£¬0£©¡¢£¨0£¬4£©£¬Çó³öÏß¶ÎAB¡¢BC¡¢ADµÄ³¤£¬·¢ÏÖAD=BC£¬AD¡ÎBC£¬µÃËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ¬ÓÖAB=BC£¬ËùÒÔËıßÐÎABCDÊÇÁâÐΣ®
£¨3£©ÏÈÇó³öBD¡¢AC£¬ÔÙÁâÐÎÐÔÖʵÃBD¡ÍAC£¬BM=DM=$\frac{1}{2}$BD=$\sqrt{5}$£¬ÉèAE=t£¬CF=t£¬ÔòAF=$4\sqrt{5}$-t£¬¹ýµãE×÷EH¡ÍACÓÚµãH£¬Ò×Ö¤¡÷AEH¡×¡÷ADM£¬ÁбÈÀýʽÇó³öEH£¬¸ù¾ÝS¡÷BEF=SÁâÐÎABCD-S¡÷AEB-S¡÷BFC-SËıßÐÎEDCF£¬ÁгöSÓëtµÄº¯Êý¹ØÏµÊ½£®
½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬µÃ$\left\{\begin{array}{l}c=4\\-\frac{b}{{2¡Á\frac{2}{3}}}\end{array}\right.=\frac{5}{2}$£¬½âµÃ$\left\{\begin{array}{l}c=4\\ b=-\frac{10}{3}\end{array}\right.$![]()
¡àÅ×ÎïÏߵĽâÎöʽΪ$y=\frac{2}{3}{x^2}-\frac{10}{3}x+4$£®
£¨2£©ËıßÐÎABCDÊÇÁâÐΣ®Èçͼ¢Ù£¬
ÀíÓÉ£º¡ßµ±y=0ʱ£¬$\frac{2}{3}{x^2}-\frac{10}{3}x+4=0$£¬½âµÃ£ºx1=-3£¬x2=2£¬
¡àµãDΪ£¨2£¬0£©£®
¡ßµ±y=4ʱ£¬$\frac{2}{3}{x^2}-\frac{10}{3}x+4=4$£¬½âµÃ£ºx1=0£¬x2=5£¬
¡àµãCΪ£¨5£¬4£©£®¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡
¡ßA¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-3£¬0£©¡¢£¨0£¬4£©£¬
¡àBC=AD=5£®
¡ßBC¡ÎAD£¬![]()
¡àËıßÐÎABCDÊÇÆ½ÐÐËıßÐΣ®
ÔÚRt¡÷AOBÖУ¬¡ÏAOB=90¡ã£¬
¡àAB=$\sqrt{{3^2}+{4^2}}$=5£®
¡àAB=AD£®
¡à?ABCDÊÇÁâÐΣ®
£¨3£©Èçͼ¢Ú£¬
ÓɵãB£¨0£¬4£©£¬µãD£¨2£¬0£©£¬¿ÉµÃBD=$2\sqrt{5}$£®
ÓɵãA£¨-3£¬0£©£¬µãC£¨5£¬4£©£¬¿ÉµÃAC=$4\sqrt{5}$£®
ÔÚÁâÐÎABCDÖУ¬
BD¡ÍAC£¬BM=DM=$\frac{1}{2}$BD=$\sqrt{5}$£®
ÓÉÌâÒ⣬֪AE=t£¬CF=t£¬AF=$4\sqrt{5}$-t£®
¹ýµãE×÷EH¡ÍACÓÚµãH£®
¡àEH¡ÎBD£®
¡à¡÷AEH¡×¡÷ADM£®
¡à$\frac{EH}{DM}=\frac{AE}{AD}$£¬¼´£º$\frac{EH}{{\sqrt{5}}}=\frac{t}{5}$£®
½âµÃ$EH=\frac{{\sqrt{5}}}{5}t$£®
¡àS¡÷BEF=SÁâÐÎABCD-S¡÷AEB-S¡÷BFC-SËıßÐÎEDCF
=SÁâÐÎABCD-S¡÷AEB-S¡÷BFC-£¨S¡÷ADC-S¡÷AEF£©
=$5¡Á4-\frac{1}{2}¡Á4t-\frac{1}{2}¡Á\sqrt{5}t-[{\frac{1}{2}¡Á4\sqrt{5}¡Á\sqrt{5}-\frac{1}{2}¡Á£¨{4\sqrt{5}-t}£©¡Á\frac{{\sqrt{5}}}{5}t}]$
=$-\frac{{\sqrt{5}}}{10}{t^2}-\frac{{\sqrt{5}}}{2}t+10$£®
¼´SÓëtµÄº¯Êý¹ØÏµÊ½Îª£ºS=$-\frac{{\sqrt{5}}}{10}{t^2}-\frac{{\sqrt{5}}}{2}t+10$£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁË´ý¶¨ÏµÊý·¨Çó½âÎöʽ¡¢ÁâÐεÄÅж¨ÓëÐÔÖÊ¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢¹´¹É¶¨ÀíÒÔ¼°¸ù¾ÝÃæ»ýÁк¯Êý±í´ïʽ£¬´ËÌâ×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨ÄѶȣ¬µÚÈýСÌâÊÇÄѵ㣬¹Ø¼üÊÇÕÒµ½¡÷BEFÃæ»ýµÄ·Ö½â·½·¨£®
| A£® | $\frac{1}{3}$ | B£® | $\frac{7}{10}$ | C£® | $\frac{3}{5}$ | D£® | $\frac{13}{20}$ |