题目内容

19.已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).
(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;
(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;
(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.

分析 (1)把(x-m)看作一个整体,令y=0,利用根的判别式进行判断即可;
(2)令y=0,利用因式分解法解方程求出x1=m,x2=m+1,根据x12+x22=25,代入得到关于m的方程,解方程即可求解;
(3)根据两点间的距离公式求出AB,再把抛物线转化为顶点式形式求出顶点坐标,再利用三角形的面积公式列式进行计算即可得解.

解答 (1)证明:令y=0,a(x-m)2-a(x-m)=0,
△=(-a)2-4a×0=a2
∵a≠0,
∴a2>0,
∴不论a与m为何值,该函数的图象与x轴总有两个公共点;

(2)解:y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0,
解得x1=m,x2=m+1,
∵x12+x22=25,
∴m2+(m+1)2=25,
解得m1=-4,m2=3.
故m的值为-4或3;

(3)解:∵x1=m,x2=m+1,
∴AB=(m+1)-m=1,
y=a(x-m)2-a(x-m)=a(x-m-$\frac{1}{2}$)2-$\frac{a}{4}$,
△ABC的面积=$\frac{1}{2}$×1×|-$\frac{a}{4}$|=1,
解得a=±8.
故a的值是±8.

点评 本题考查了二次函数综合题,主要利用了根的判别式,三角形的面积,把(x-m)看作一个整体求解更加简便.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网