题目内容
3.若a,b互为相反数(a≠0,b≠0),n是自然数,则( )| A. | a2n和b2n互为相反数 | B. | a2n+1和B2n+1互为相反数 | ||
| C. | a2与b2互为相反数 | D. | an与bn互为相反数 |
分析 根据正数的任何次是正数,负数的偶次幂是正数,奇数次幂是负数分别对每一项进行分析即可.
解答 解:A、∵a,b互为相反数(a≠0,b≠0),n是自然数,2n是偶数,
∴a2n和b2n相等;
故本选项错误;
B、∵a,b互为相反数(a≠0,b≠0),n是自然数,2n+1是奇数,
∴a2n+1和B2n+1互为相反数;
故本选项正确;
C、∵a,b互为相反数(a≠0,b≠0),n是自然数,
∴a2与b2相等;
故本选项错误;
D、a,b互为相反数(a≠0,b≠0),当n是奇数时,an与bn互为相反数,故本选项错误;
故选B.
点评 此题考查了有理数的乘方,用到的知识点是正数的任何次是正数,负数的偶次幂是正数,奇数次幂是负数.
练习册系列答案
相关题目
8.在下表的空格内填入适当的数,使表中各横行四个数之和与各竖列的四个数之和均相等.
| -1 | -14 | -1 | 12 |
| -5 | 6 | ||
| -10 | 16 | ||
| 11 | -13 |
12.一元二次方程(x-2)=x(x-2)的解是( )
| A. | x=1 | B. | x=2 | C. | x1=2,x2=0 | D. | x1=1,x2=2 |