题目内容

12.如图:△ABC是⊙O的内接三角形,∠ACB=45°,∠AOC=150°,过点C作⊙O的切线交AB的延长线于点D.
(1)求证:CD=CB;
(2)如果⊙O的半径为$\sqrt{2}$,求AB的长.

分析 (1)首先连接OB,则∠AOB=2∠ACB=2×45°=90°,由∠AOC=150°,易得△OBC是等边三角形,又由过点C作⊙O的切线交AB的延长线于点D,易求得∠CBD=∠D=75°,继而证得结论;
(2)由(1)可得△AOB是等腰直角三角形,又由⊙O的半径为$\sqrt{2}$,即可求得答案.

解答 (1)证明:连接OB,则∠AOB=2∠ACB=2×45°=90°,
∵OA=OB,
∴∠OAB=OBA=45°,
∵∠AOC=150°,OA=OC,
∴∠OCA=∠OAC=15°,
∴∠OCB=∠OCA+∠ACB=60°,
∴△OBC是等边三角形,
∴∠BOC=∠OBC=60°,
∴∠CBD=180°-∠OBA-∠OBC=75°,
∵CD是⊙O的切线,
∴OC⊥CD,
∴∠D=360°-∠OBD-∠BOC-∠OCD=360°-(60°+75°)-60°-90°=75°,
∴∠CBD=∠D,
∴CB=CD;

(2)解:∵∠AOB=2∠ACB=90°,OA=OB=$\sqrt{2}$,
∴AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=2.

点评 此题考查了切线的性质、圆周角定理以及等腰直角三角形的性质.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网