题目内容

1.如图,AB∥CD,直L交AB、CD分别于点E、F,点M在线段EF上(点M不与E、F重合),N是直线CD上的一个动点(点N不与F重合)
(1)当点N在射线FC上运动时(F点除外),则∠FMN+∠FNM=∠AEF,说明理由?
(2)当点N在射线FD上运动时(F点除外),∠FMN+∠FNM与∠AEF有什么关系?画出图形,猜想结论并证明.

分析 (1)利用两直线平行,同旁内角互补和三角形的内角和为180°,易得∠FMN+∠FNM=∠AEF;
(2)根据两直线平行,内错角相等和三角形的内角和为180度,易得∠FMN+∠FNM+∠AEF=180°.

解答 解:(1)∵AB∥CD,
∴∠AEF+∠MFN=180°.
∵∠MFN+∠FMN+∠FNM=180°,
∴∠FMN+∠FNM=∠AEF.

(2)∠FMN+∠FNM+∠AEF=180°.
理由:如图所示,
∵AB∥CD,
∴∠AEF=∠MFN.
∵∠MFN+∠FMN+∠FNM=180°,
∴∠FMN+∠FNM+∠AEF=180°.

点评 本题考查的是平行线的判定与性质,用到的知识点为:两直线平行,同旁内角互补.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网