题目内容
| A、△ADC | B、△BDC′ |
| C、△ADC′ | D、不存在 |
考点:翻折变换(折叠问题)
专题:
分析:由三角形中线的定义,可得BD=CD,又由折叠的性质,易求得∠BDC′=90°,BD=C′D,即可得△BDC′是等腰直角三角形.
解答:解:∵AD是△ABC的中线,
∴BD=CD,
由折叠的性质可得:C′D=CD,∠ADC′=∠ADC=45°,
∴∠CDC′=90°,C′D=BD,
∴∠BDC′=180°-∠CDC′=90°,
∴△BDC′是等腰直角三角形.
故选:B.
∴BD=CD,
由折叠的性质可得:C′D=CD,∠ADC′=∠ADC=45°,
∴∠CDC′=90°,C′D=BD,
∴∠BDC′=180°-∠CDC′=90°,
∴△BDC′是等腰直角三角形.
故选:B.
点评:此题考查了折叠的性质、等腰直角三角形的判定以及三角形中线的定义.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.
练习册系列答案
相关题目