题目内容
10.解方程组:(1)$\left\{\begin{array}{l}5x-y=3\\ 2x+3y=-9\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{x}{2}+\frac{y}{3}=16}\\{\frac{x}{3}-\frac{y}{4}=5}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{5x-y=3①}\\{2x+3y=-9②}\end{array}\right.$,
①×3+②得:17x=0,即x=0,
把x=0代入①得:y=-3,
则方程组的解为$\left\{\begin{array}{l}x=0\\ y=-3\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{3x+2y=96①}\\{4x-3y=60②}\end{array}\right.$,
①×3+②×2得:17x=408,即x=24,
把x=24代入①得:y=12,
则方程组的解为$\left\{\begin{array}{l}x=24\\ y=12\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
20.下列各式分式中,当x=3时没有意义的是( )
| A. | $\frac{x-3}{x+3}$ | B. | $\frac{x+3}{{{x^2}+9}}$ | C. | $\frac{2x}{x+3}$ | D. | $\frac{x}{x-3}$ |
19.
如图,以△ABC的边BC为直径的圆O分别交AB,AC于点D、E,连接OD、OE,若∠DOE=50°,则∠A的度数为( )
| A. | 65° | B. | 60° | C. | 50° | D. | 45° |