ÌâÄ¿ÄÚÈÝ

2£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=a2x+bx+4ÓëxÖá½»ÓÚA¡¢BÁ½µã£¨µãAÔÚÔ­µã×ó²à£¬µãBÔÚÔ­µãÓҲࣩ£¬ÓëyÖá½»ÓÚµãC£®ÒÑÖªOA=1£¬OC=OB£®
£¨1£©ÇóÕâ¸öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôµãDΪµÚÒ»ÏóÏÞÄÚÅ×ÎïÏßÉϵÄÒ»µã£¬Á¬½ÓCD£¬DB£¬ÇóËıßÐÎOCDBµÄÃæ»ýµÄ×î´óÖµ£¬²¢Çó³ö´ËʱDµãµÄ×ø±ê£»
£¨3£©ÉèEÊǸÃÅ×ÎïÏßÉÏλÓÚ¶Ô³ÆÖáÓÒ²àµÄÒ»¸ö¶¯µã£¬¹ýµãE×÷xÖáÆ½ÐÐÏß½»Å×ÎïÏßÓÚÁíÒ»µãF£¬¹ýµãE×÷EH¡ÍxÖáÓÚµãH£¬ÔÙ¹ýµãF×÷FG¡ÍxÖáÓÚµãG£¬µÃµ½¾ØÐÎEFGH£¬ÔÚµãEµÄÔ˶¯¹ý³ÌÖУ¬µ±¾ØÐÎEFGHΪÕý·½ÐÎʱ£¬Çó³ö¸ÃÕý·½Ðεı߳¤£®

·ÖÎö £¨1£©Ê×ÏÈÇóµÃCµÄ×ø±ê£¬ÔòBµÄ×ø±ê¼´¿ÉÇóµÃ£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Éè³öDµÄ×ø±ê£¬ÔòÀûÓÃDµÄ×ø±ê¼´¿É±íʾ³öËıßÐεÄÃæ»ý£¬¸ù¾Ýº¯ÊýµÄÐÔÖÊÇóµÃ×î´óÖµ£¬ÔòDµÄ×ø±ê¼´¿ÉÇóµÃ£»
£¨3£©¸ù¾ÝEºÍF¹ØÓÚ¶Ô³ÆÖá¶Ô³Æ£¬È»ºóÀûÓÃÕý·½ÐεÄÐÔÖʼ´¿ÉÁз½³ÌÇó½â£®

½â´ð ½â£º£¨1£©ÔÚy=a2x+bx+4ÖÐÁîx=0£¬Ôòy=4£¬ÔòCµÄ×ø±êÊÇ£¨0£¬4£©£¬
¡ßOC=OB£¬
¡àBµÄ×ø±êÊÇ£¨4£¬0£©£®
°Ñ£¨4£¬0£©£¨-1£¬0£©£¬´úÈëy=a2x+bx+4µÃ£º$\left\{\begin{array}{l}{\\;a-\\;b+4=0}\\{16\\;a+4\\;b+4=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{\\;a=-1}\\{\\;b=3}\end{array}\right.$£¬
Ôòº¯ÊýµÄ½âÎöʽÊÇ£ºy=-x2+3x+4£»
£¨2£©ÉèÖ±ÏßBCµÄ½âÎöʽÊÇy=kx+b£¬
¸ù¾ÝÌâÒâµÃ£º$\left\{\begin{array}{l}{4\\;k+\\;b=0}\\{\\;b=4}\end{array}\right.$£¬
½âµÃ£º{£¬$\left\{\begin{array}{l}{\\;k=-1}\\{\\;b=4}\end{array}\right.$£¬
ÔòÖ±ÏßBCµÄ½âÎöʽÊÇy=-x+4£®
ÉèD£¨m£¬-m2+3m+4£©£¬
×÷DE¡ÍxÖáÓÚµãE£®
ÔòSËıßÐÎOCEB=SÌÝÐÎOCDE+S¡÷BED=$\frac{1}{2}$¡¾4+£¨-m2+3m+4£©¡¿m+$\frac{1}{2}$£¨4-m£©£¨-m2+3m+4£©
=-2£¨m-2£©2+14£¬
Ôòµ±x=2ʱ£¬y=-2+4=2£¬ÔòDµÄ×ø±êÊÇ£¨2£¬6£©£¬´ËʱSµÄ×î´óÖµÊÇ14£»
£¨3£©Å×ÎïÏߵĶԳÆÖáÊÇx=$\frac{3}{2}$£¬
ÉèÕý·½Ðεı߳¤ÊÇn£¬ÔòEµÄ×ø±êÊÇ2£¨$\frac{\\;n}{2}$-$\frac{3}{2}$$\frac{3}{2}$£¬n£©£¬
´úÈëy=-x2+3x+4µÃ£º-£¨$\frac{\\;n}{2}-\frac{3}{2}$£©2+3¡Á£¨$\frac{\\;n}{2}$-$\frac{3}{2}$£©+4=n£¬
½âµÃ£ºn=4+2$\sqrt{5}$»ò4-2$\sqrt{5}$£¨ÉáÈ¥£©£®
ÔòÕý·½ÐεÄÃæ»ýÊÇ£¨4+2$\sqrt{5}$£©2=36+16$\sqrt{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄͼÏóÓëÐÔÖÊ£¬°ÑÇóËıßÐεÄÃæ»ý×î´óÖµµÄÎÊÌâת»¯Îªº¯Êý×îÖµÎÊÌâÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø