题目内容

16.如图,在平行四边形ABCD中,AB=$\sqrt{13}$,AD=4,将?ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为多少?

分析 首先由翻折性质得出AE是BC的垂直平分线,点E是BC的中点,则BE=2,根据勾股定理计算即可.

解答 解:由题意得:AE是BC的垂直平分线,
∵四边形ABCD是平行四边形,
∴BC=AD=4,
∴BE=$\frac{1}{2}$BC=$\frac{1}{2}$×4=2,
由勾股定理得:AE=$\sqrt{A{B}^{2}-B{E}^{2}}$=$\sqrt{(\sqrt{13})^{2}-{2}^{2}}$=3,
则折痕AE的长为3.

点评 本题考查了平行四边形的性质和翻折变换,熟练掌握平行四边形的对边相等且平行;明确翻折变换(折叠问题)实质上就是轴对称变换;它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,本题沿AE翻折,则直线AE就是对称轴.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网