题目内容

8.已知如图所示,在?ABCD中,∠A=60°,E,F分别是AB,CD中点,AB=2AD.求证:BD=$\sqrt{3}$EF.

分析 先连接,DE构造平行四边形,再利用平行四边形及等边三角形的性质解答.

解答 证明:连结DE,

∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∵DF=$\frac{1}{2}$CD,AE=$\frac{1}{2}$AB,
∴DF=AE,DF∥AE,
∴四边形ADFE是平行四边形.
∴EF=AD,
∴AB=2AE,
∴AD=AE.
∴∠1=∠4.
∵∠A=60°,∠1+∠4+∠A=180°,
∴∠1=∠A=∠4=60°.
∴△ADE是等边三角形,
∴DE=AE.
∵AE=BE,
∴DE=BE,
∴∠2=∠3.
∵∠1=∠2+∠3,∠1=60°,
∴∠2=∠3=30°.
∴∠ADB=∠3+∠4=90°
∴BD=$\sqrt{A{B}^{2}-A{D}^{2}}=\sqrt{(2AD)^{2}-A{D}^{2}}=\sqrt{3}AD$,
∴BD=$\sqrt{3}$EF.

点评 本题考查了平行四边形的性质和判定,解答此题的关键是构造平行四边形,用平行四边形及等边三角形的性质,直角三角形的性质解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网