题目内容
一组数据4、0、1、2、2的平均数为 .
1.
【解析】
试题分析:由题意知,数据4、0、1、2、2的平均数.故答案为:1.
考点:算术平均数.
(本题满分10分)点A、B、C、D在⊙O上,∠ADC=60°,C是弧AB的中点.
(1)判断△ABC的形状,并说明理由;
(2)若BC=cm,求图中阴影部分的面积.
如图,△AOB中,∠B=30°,将△AOB绕点O顺时针旋转得到△A′OB′,若∠A′=40°,则∠B′= °,∠AOB= .
(8分)已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.
(1)发现:当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积
关系是: .
(2)引申:当正方形AEFG旋转任意一个角度时(如图2),△ABE与△ADG的面
积关系是:______________________.并证明你的结论.
证明:
(3)运用:已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图3),则图中阴影部分的面积和的最大值是 cm2.
如图,O为△ABC的重心,若OD=2,则AO= .
(8分)某篮球队在一次联赛中共进行了10场比赛,已知10场比赛的平均得分为88分,且前9场比赛的得分依次为:97、91、85、91、84、86、85、82、88.
(1)求第10场比赛的得分;
(2)求这10场比赛得分的中位数,众数和方差.
如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使黑色图形成为轴对称图形,这样的白色小方格有 个.
(本题满分10分)已知在△ABC中,AB=,AC=,BC=3.
(1)如图,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;
(2)如图,是由100个边长为1的小正方形组成的10×10的正方形网格, 设顶点在这些小正方形顶点的三角形为格点三角形.
①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明);
②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).
(本题6分) 如图,在11×11的正方形网格中,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)在图中作出△ABC关于直线l对称的△A1B1C1 (要求A与A1,B与B1,C与C1相对应) ;
(2)在直线l上找一点P,使得△PAC的周长最小.