题目内容

已知抛物线C1:y=-x2+2mx+1(m为常数,且m>0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B,连接AC,BC,AB.
(1)当m=1时,判定△ABC的形状,并说明理由;
(2)抛物线C1上是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.
考点:二次函数综合题
专题:
分析:(1)根据轴对称的性质可得:AC=BC等腰三角形,借助于辅助线,又可求得∠ACy=45°,可得△ABC为等腰直角三角形;
(2)首先假设成立,根据菱形的性质求解,求得m=
3
,所以存在.
解答:解:(1)当m=1时,△ABC为等腰直角三角形.  
理由如下:
如图:∵点A与点B关于y轴对称,点C又在y轴上,
∴AC=BC. 
过点A作抛物线C1的对称轴,交x轴于D,过点C作CE⊥AD于E.
当m=1时,顶点A的坐标为A(1,2),
∴CE=1.
又∵点C的坐标为(0,1),AE=2-1.
∴AE=CE.从而∠ECA=45°,
∴∠ACy=45°.
由对称性知∠BCy=∠ACy=45°,
∴∠ACB=90°.
∴△ABC为等腰直角三角形.  

(2)假设抛物线C1上存在点P,使得四边形ABCP为菱形,则PC=AB=BC.
由(1)知,AC=BC,
∴AB=BC=AC.
∴△ABC为等边三角形.
∴∠ACy=∠BCy=30°.
∵四边形ABCP为菱形,且点P在C1上,
∴点P与点C关于AD对称.
∴PC与AD的交点也为点E,
因此∠ACE=90°-30°=60°.
∵点A,C的坐标分别为A(m,m2+1),C(0,1),
∴AE=m2+1-1=m2,CE=m.
在Rt△ACE中,tan60°=
AE
CE
=
m2
m
=
3

∴m=±
3

∵m>0,
∴m=
3

故抛物线C1上存在点P,使得四边形ABCP为菱形,
此时m=
3
点评:此题考查了二次函数与四边形以及轴对称图形的综合知识,解题时要注意辅助线选择与应用,还要注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网