题目内容

12.如图,直线l1:y=x+1与直线l2:y=$\frac{1}{2}$x+$\frac{1}{2}$相交于点P(-1,0),直线l1与y轴交于点A,一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B2处后,改为垂直于x轴的方向运动,到达直线l1上的A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,达到直线l1上的点A2处后,仍沿平行于x轴的方向运动,…照此规律运动,动点C依次经过点B1,A1,B2,A2,B3,A3,…,B2015,A2015,…则当动点C到达A2015处时,运动的总路径的长为(  )
A.22015-2B.22014-1C.22016-2D.22017-2

分析 由直线直线l1:y=x+1可知,A(0,1),则B1纵坐标为1,代入直线l2:y=$\frac{1}{2}$x+$\frac{1}{2}$中,得B1(1,1),又A1、B1横坐标相等,可得A1(1,2),则AB1=1,A1B1=2-1=1,可判断△AA1B1为等腰直角三角形,利用平行线的性质,得△A1A2B2、△A2A3B3、…、都是等腰直角三角形,根据平行于x轴的直线上两点纵坐标相等,平行于y轴的直线上两点横坐标相等,及直线l1、l2的解析式,分别求AB1+A1B1,A1B2+A2B2的长,得出一般规律.

解答 解:由直线直线l1:y=x+1可知,A(0,1),根据平行于x轴的直线上两点纵坐标相等,平行于y轴的直线上两点横坐标相等,及直线l1、l2的解析式可知,B1(1,1),AB1=1,
A1(1,2),A1B1=2-1=1,AB1+A1B1=2,
B2(3,2),A2(3,4),A1B2=3-1=2,A2B2=4-2=2,A1B2+A2B2=2+2=4=22
…,
由此可得An-1Bn+AnBn=2n
所以,当动点C到达An处时,运动的总路径的长为2+22+23+..+2n=2n+1-2,
当动点C到达A2015处时,运动的总路径的长为22016-2,
故选C

点评 本题考查了一次函数的综合运用.关键是利用平行于x轴的直线上点的纵坐标相等,平行于y轴的直线上点的横坐标相等,得出点的坐标,判断等腰直角三角形,得出一般规律.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网